
Approaching equilibrium and the distribution of clusters

Hui Wang,1 Kipton Barros,2 Harvey Gould,1 and W. Klein2

1Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
2Department of Physics and the Center for Computational Science, Boston University, Boston, Massachusetts 02215, USA

�Received 17 April 2007; published 11 October 2007�

We investigate the approach to stable and metastable equilibrium in both nearest-neighbor and long-range
Ising models using a cluster representation. The distribution of nucleation times is determined using the
Metropolis algorithm and the corresponding �4 model using Langevin dynamics. We find that the nucleation
rate is suppressed at early times even after global variables such as the magnetization and energy have
apparently reached their time independent values. The mean number of clusters whose size is comparable to
the size of the nucleating droplet becomes time independent at about the same time that the nucleation rate
reaches its constant value. We also find subtle structural differences between the nucleating droplets formed
before and after apparent metastable equilibrium has been established.
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I. INTRODUCTION

Understanding nucleation is important in fields as diverse
as materials science, biological physics, and meteorology
�1–9�. Fundamental progress was made when Gibbs assumed
that the droplet can be considered to be a fluctuation about
metastable equilibrium, and hence the probability of a drop-
let is independent of time �10�. Langer �11� has shown that
the probability of a droplet can be related to the analytic
continuation of the stable state free energy in the limit that
the metastable state lifetime approaches infinity. Hence the
assumption by Gibbs is valid in this limit. It has also been
shown that the Gibbs assumption is applicable in systems for
which the interaction range R→� �12,13�.

For metastable states with finite lifetimes equilibrium is
never reached because a large enough fluctuation would ini-
tiate the transformation to the stable state. However, if the
probability of such a fluctuation is sufficiently small, it is
possible that systems investigated by simulations and experi-
ments can be well approximated as being in equilibrium.
Hence, for metastable lifetimes that are very long, we expect
the Gibbs assumption to be a good approximation.

In practice, nucleation is not usually observed when the
lifetime of the metastable state is very long. Processes such
as alloy formation, decay of the false vacuum, and protein
crystallization generally occur during a continuous quench of
a control parameter such as the temperature. It is natural to
ask if the nucleation process that is observed occurs when the
system can be reasonably approximated by treating it as if it
were in metastable equilibrium.

It is frequently assumed that metastable equilibrium is a
good approximation when the mean value of the order pa-
rameter and various global quantities are no longer changing
with time. As an example, we consider the nearest-neighbor
Ising model on a square lattice and equilibrate the system at
temperature T=4Tc /9 in a magnetic field h=0.44. The rela-
tively small value of the linear dimension L=200 was chosen
in order to avoid nucleation occurring too quickly. At time
t=0 the sign of the magnetic field is reversed. In Fig. 1 we
plot the evolution of the magnetization m�t� and the energy
e�t� per spin using the Metropolis algorithm. The solid lines

are the fits to an exponential function with the relaxation
time �g�1.5. In the following we will measure the time in
terms of Monte Carlo steps per spin.

A major goal of this paper is to address the question: Can
the system be treated as being in metastable equilibrium for
t��g? If so, the nucleation rate would be time independent.
We will address this question for both the short-range and
long-range Ising models.

FIG. 1. �Color online� The evolution of the magnetization m�t�
and the energy e�t� per spin of the nearest-neighbor Ising model on
a square lattice with linear dimension L=200 using the Metropolis
algorithm. The system was prepared at temperature T=4Tc /9 in the
external magnetic field h=0.44. At time t=0 the sign of the mag-
netic field is reversed. The solid lines are fits to an exponential
function with relaxation time �g=1.5 and 1.2, respectively. �Time is
measured in Monte Carlo steps per spin.� The data is averaged over
5000 runs.
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If the nucleation rate is independent of time, the probabil-
ity of a droplet occurring at time t after the change of mag-
netic field is an exponentially decreasing function of time. To
understand this dependence we divide the time into intervals
�t and write the probability that the system nucleates in a
time interval �t as ��t, where the nucleation rate � is a
constant. The probability that nucleation occurs in the time
interval �N+1� is given by

PN = �1 − ��t�N��t . �1�

If we assume that ��t is small and write N= t /�t, we can
write

P�t��t = �1 − ��t�t/�t��t → e−�t��t , �2�

where P�t��t is the probability that the system nucleates at a
time between t and t+�t after the change of the magnetic
field. In the following we ask if the nucleation rate and the
mean values of the order parameter and other thermody-
namic quantities become time independent at approximately
the same time after a quench or is the approach to metastable
equilibrium more complicated?

In Sec. II we determine the probability distribution of the
nucleation times and find that the nucleation rate becomes a
constant only after a time �nequil that is much longer than the
relaxation time �g of m�t� and e�t�. In Sec. III we study the
microscopic behavior of the system and determine the relax-
ation time �s for ns, the mean number of clusters of size s, to
approach its equilibrium value �14�. Our main result is that �s
is an increasing function of s, and the time required for ns to
reach its equilibrium value is the same order of magnitude as
�nequil for values of s comparable to the nucleating droplet.
That is, the time for the number of clusters that are the size
of the droplet to reach its equilibrium value is considerably
longer than the time for the mean value of the order param-
eter to become independent of time within the accuracy that
we can determine.

In Secs. IV and V we show that there are subtle differ-
ences between the structure of the nucleating droplets that
occur before and after the nucleation rate has become time
independent. This difference suggests the possibility of find-
ing even greater differences in the nucleating droplets in sys-
tems of physical and technological importance. We summa-
rize and discuss our results in Sec. VI. In the Appendix we
study the evolution of the clusters after a quench to the criti-
cal temperature of the Ising model and again find that that
the clusters equilibrate in size order, with the smaller clusters
equilibrating first. Hence in principle, an infinite system will
never equilibrate. How close to equilibrium a system needs
to be and on what spatial scale so that it can be treated by
equilibrium methods depends on the physical process of in-
terest.

II. DISTRIBUTION OF NUCLEATION TIMES

We simulate the Ising model on a square lattice with in-
teraction range R with the Hamiltonian

H = − J�
�i,j�

sisj − h�
i

si, �3�

where h is the external field. The notation �i , j� in the first
sum means that the distance between spins i and j is within
the interaction range R. We studied both nearest-neighbor
�R=1� and long-range interactions �R�20�. The interaction
strength J is scaled as J=4/q, where q=2R�R+1� is the
number of interaction neighbors per spin. The external field
h and the temperature are measured in terms of J in the
simulations. All of our simulations are at temperature T
=4Tc /9, where Tc is the critical temperature. For R=1 the
critical temperature is Tc�2.269. For R�20 the mean-field
result Tc=4 is a good approximation to the critical tempera-
ture �15�. As discussed in Sec. I the system is equilibrated in
a magnetic field h. The time t=0 corresponds to the time
immediately after the magnetic field is reversed.

The clusters in the Ising model are defined rigorously by a
mapping of the Ising critical point onto the percolation tran-
sition of a properly chosen percolation model �9,16,17�. Two
parallel spins that are within the interaction range R are con-
nected only if there is a bond between them. The bonds are
assigned with the probability pb=1−e−2�J for R=1 and pb
=1−e−2�J�1−	� near the spinodal, where 	 is the density of the
stable spins, and � is the inverse temperature �18�. Spins that
are connected by bonds form a cluster.

Because the intervention method �19� of identifying the
nucleating droplet is time consuming �see Sec. IV�, we use a
simpler criterion in this section to estimate the nucleation
time. We monitor the size of the largest cluster �averaged
over 20 bond realizations� and estimate the nucleation time
as the time when the largest cluster first reaches a threshold
size s*. The threshold size s* is chosen so that the largest
cluster begins to grow rapidly once its size is greater than or
equal to s*. Because s* is larger than the actual size of the
nucleating droplet, the nucleation time that we estimate by
this criterion will be 1 to 2 Monte Carlo steps per spin later
than the nucleation time determined by the intervention
method. Although the distribution function P�t� is shifted to
slightly later times, the nucleation rate is found to be insen-
sitive to the choice of the threshold.

Figure 2 shows P�t� for R=1 and h=0.44, where P�t��t is
the probability that nucleation has occurred between time t
and t+�t. The results for P�t� were averaged over 5000 runs.
Note that P�t� is an increasing function of t for early times,
reaches a maximum at t=�nequil�60, and fits to the expected
exponential form for t��nequil. The fact that P�t� falls below
the expected exponential for t
�nequil indicates that the
nucleation rate is reduced from its equilibrium value and that
system is not in metastable equilibrium. Similar nonequilib-
rium effects have been studied and observed in Ising-type
�20–23� and continuous systems �24�. We conclude that the
time for the nucleation rate to become time independent after
the change of magnetic field is much longer than the relax-
ation time �g	1.5 of the magnetization and energy. We will
refer to nucleation that occurs before the nucleation rate has
become time independent as transient nucleation.

The mean size of the droplet was estimated by finding the
maximum cluster size that failed to grow �instead of using
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the intervention method�. This size represents an upper
bound to the size of the nucleating droplet. For h=0.44 this
size was found to be approximately 25 spins, which is con-
sistent with our observation that a cluster starts to grow rap-
idly once its size reaches 20–25 spins.

In order to see if the same qualitative behavior holds near
the pseudospinodal �25�, we simulated the long-range Ising
model with R=20 and h=1.258. In the mean-field limit
R→� the spinodal field is at hs=1.2704 �12� �for T=4Tc /9�.
A plot of m�t� for this system is shown in Fig. 3�a� and is
seen to have the same qualitative behavior as in Fig. 2 for
R=1; the relaxation time �g�4.5. In Fig. 3�b� the distribu-
tion of nucleation times is shown, and we see that P�t� does
not decay exponentially until t��nequil=40. According to
Ref. �26�, �nequil should become comparable to �g in the limit
R→� because the free energy is described only by the mag-
netization in the mean-field limit. We find that the difference
between �nequil and �g is smaller for R=20 than for R=1,
consistent with Ref. �26�.

III. RELAXATION OF CLUSTERS TO METASTABLE
EQUILIBRIUM

Given that there is a significant time delay between the
relaxation of the magnetization and the energy and the
equilibration of the system as measured by the nucleation
rate, it is interesting to monitor the time dependence of the

cluster-size distribution after the reverse of the magnetic
field. After the change the system gradually relaxes to meta-
stable equilibrium by forming clusters of spins in the stable
direction. How long is required for the number of clusters of
size s to reach equilibrium? In particular, we are interested in
the time required for clusters that are comparable in size to
the nucleating droplet.

We first consider R=1 and monitor the number of clusters
ns of size s at time t. To obtain good statistics we chose L
=200 and averaged over 5000 runs. Figure 4 shows the evo-
lution of n6�t�, which can be fitted to the exponential form

ns�t� = ns,��1 − e−t/�s� . �4�

We find that �s�8.1 for s=6. By doing similar fits for a
range of s, we find that the time �s for the mean number of
clusters of size s to become time independent increases lin-
early with s over the range of s that we can simulate �see
Fig. 5�. The linear dependence of �s on s is consistent with
the theoretical prediction in Ref. �27�. The extrapolated value
of �s corresponding to the mean size of the droplet
��25 spins by direct simulation� is �extrap�34. That is, it
takes a time of �extrap�34 for the mean number of clusters
whose size is the order of the nucleating droplets to become
time independent. The time �extrap is much longer than the

FIG. 2. �Color online� The distribution of nucleation times P�t�
averaged over 5000 runs for the same system as in Fig. 1. The
threshold size was chosen to be s*=30. �The mean size of the drop-
let is �25 spins.� �a� P�t� begins to decay exponentially at �nequil

�60. The nucleation rate after equilibrium has been established is
determined from the log-linear plot in �b� and is ��9�10−4 �see
Eq. �2��.

FIG. 3. �Color online� �a� The evolution of m�t� for the long-
range Ising model on a square lattice with R=20, h=1.258, and L
=500. The solid line is an exponential fit with the relaxation time
�g�4.5. The data is averaged over 2000 runs. �b� The distribution
of nucleation times P�t� for the same system and number of runs.
P�t� decays exponentially for t��nequil�40. The nucleation rate
once equilibrium has been established is �=6.4�10−2. The mean
size of the nucleating droplet is determined to be 300 spins using
the same method as for R=1.
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relaxation time �g�1.5 of the macroscopic quantities m�t�
and e�t� and is comparable to the time �nequil�60 for the
nucleation rate to become independent of time.

Because the number of clusters in the nucleating droplet
is relatively small for R=1 except very close to coexistence

�small h�, we also consider a long-range Ising model with
R=20 and h=1.258 �as in Fig. 3�. The relaxation time �s of
the clusters near the pseudospinodal fits to a power law �s

sx with x�0.56 �see Fig. 5�b��. If we extrapolate �s to s
=300, the approximate size of the nucleating droplet, we find
that the equilibration time for clusters of the size of the drop-
let is �extrap�30, which is comparable to the time �nequil
�40 for the nucleation rate to become independent of time.

To determine if our results are affected by finite size ef-
fects, we compared the equilibration time of the clusters for
lattices with linear dimension L=2000 and L=5000. The
equilibration times of the clusters were found to be unaf-
fected.

IV. STRUCTURE OF THE NUCLEATING DROPLET

Because nucleation can occur both before and after the
nucleation rate has become independent of time, we ask if
there are any structural differences between the nucleating
droplets formed in these two cases. To answer this question,
we determine the nature of the nucleating droplets for the
one-dimensional �1D� Ising model where we can make R
�and hence the size of the nucleating droplets� large enough
so that the structure of the nucleating droplets is well de-
fined. In the following we take R=212=4096, h=1.265, and
L=218. The relaxation time for m�t� is �g�40, and the time
for the distribution of nucleation times to reach equilibrium
is �nequil�90.

We use the intervention method to identify nucleation
�19�. To implement this method, we choose a time at which a
droplet might exist and make many copies of the system.
Each copy is restarted using a different random number seed.
The idea is to determine if the largest cluster in each of the
copies grows in approximately the same place at about the
same time. If the percentage of copies that grow is greater
than 50%, the nucleating droplet is already in the growth
phase; if it is less than 50%, the time chosen is earlier than
nucleation. We used a total of 20 trials to make this determi-
nation.

Our procedure is to observe the system for a time tobs after
the intervention and determine if the size of the largest clus-
ter exceeds the threshold size s* at approximately the same
location. To ensure that the largest cluster at tobs is the same
cluster as the original one, we require that the center of mass
of the largest cluster be within a distance r* of the largest
cluster in the original configuration. If these conditions are
satisfied, the droplet is said to grow. We choose tobs=6, r*

=2R, and s*=2000. �In comparison, the size of the droplet
for the particular run that we will discuss is �1080 spins.�

There is some ambiguity in our identification of the nucle-
ation time because the saddle point parameter is large but
finite �9�. This ambiguity manifests itself in the somewhat
arbitrary choices of the parameters tobs, r*, and s*. We tried
different values for tobs, r*, and s* and found that our results
depend more strongly on the value of the parameter r* than
on the values of tobs and s*. If we take r*=R /2, the nucleat-
ing droplets almost always occur one to two Monte Carlo
steps per spin later than for r*=2R. The reason is that the
linear size of the droplet is typically 6–8R, and its center of

FIG. 4. �Color online� The evolution of the number of clusters
of size s=6 averaged over 5000 runs for R=1 and the same condi-
tions as in Fig. 1. The fit is to the exponential form in Eq. �4� with
�s�8.1 and ns,�=0.0175.

FIG. 5. �Color online� �a� The equilibration time �s as a function
of the cluster size s for R=1 and h=0.44 and the same conditions as
in Fig. 1. The s dependence of �s is approximately linear. The ex-
trapolated value of �s corresponding to the mean size of the droplet
��25 spins� is �extrap�34, which is the same order of magnitude as
time �nequil�60 for the nucleation rate to become independent of
time. �b� Log-log plot of the equilibration time �s versus s for R
=20 and h=1.258 and the same conditions as in Fig. 3�b�. We find
that �s
sx with the exponent x�0.56. The extrapolated value of �s

corresponding to the mean size of the droplet ��300 spins� is
�extrap�30, which is comparable to the time �nequil�40 for the
nucleation rate to become independent of time.
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mass might shift more than R /2 during the time tobs. If such
a shift occurs, a cluster that would be said to grow for
r*=2R would not be counted as such because it did not sat-
isfy the center of mass criterion. This shift causes an overes-
timate of the time of the nucleating droplet. A reasonable
choice of r* is 20%–40% of the linear size of the nucleating
droplet. The choice of parameters is particularly important
here because the rate of growth of the transient nucleating
droplets is slower than the growth rate of droplets formed
after the nucleation rate has become independent of time.
Hence, we have to identify the nucleating droplet as care-
fully as possible.

Because nucleation studies are computationally intensive,
we used an algorithm for simulating Ising models with a
uniform long-range interaction �28�. The algorithm uses a
hierarchical data structure to store the magnetization at many
length scales, and can find the energy cost of flipping a spin
in time O��ln R�d�, rather than the usual time O�Rd�, where d
is the spatial dimension.

Figure 6 shows the fraction of copies for which the larg-
est cluster grows as a function of the intervention time. For
this particular run the nucleating droplet is found to occur at
t�37.4.

We simulated 100 systems in which nucleation occurred
before global quantities such as m�t� became independent
of time, t
�g�40, and 100 systems for which nucleation
occurred after the nucleation rate became time independent
�t��nequil�90�. We found that the mean size of the nucleat-
ing droplet for t
�g is �1200 with a standard deviation of

�150 in comparison to the mean size of the nucleating
droplet for t��nequil of �1270 and 
�200. That is, the
nucleating droplets formed before the nucleation rate has be-
come independent of time are somewhat smaller.

We introduce the cluster profile 	cl to characterize the
shape of the largest cluster at the time of nucleation. For a
particular bond realization a spin that is in the stable direc-
tion might or might not be a part of the largest cluster due to
the probabilistic nature of the bonds. For this reason bond
averaging is implemented by placing 100 independent sets of
bonds between spins with probability pb=1−e−2�J�1−	� in the

stable direction. The clusters are identified for each set of
bonds, and the probability pi that spin i is in the largest
cluster is determined. The values of pi for the spins in a
particular bin are then averaged using a bin width equal to
R /4. This mean value of pi is associated with 	cl. Note that
the spins that point in the unstable direction are omitted in
this procedure. The mean cluster profile is found by translat-
ing the peak position of each droplet to the origin.

Figure 7�a� shows the mean cluster profile formed
after the nucleation rate has become independent of time
�t��nequil�90�. The position x is measured in units of R. For
comparison we fit 	cl to the form �12�

	�x� = A sech2�x/w� + 	0, �5�

with Acl=0.36, wcl=2.95, and 	0=0 by construction. In
Fig. 7�b� we show a comparison of 	cl to the Gaussian
form Ag exp�−�x /wg�2� with Ag=0.35 and wg=3.31. Note
that Eq. �5� gives a better fit than a Gaussian, which under-
estimates the peak at x=0 and the wings. Although Unger
and Klein �12� derived Eq. �5� for the magnetization saddle-
point profile, we see that this form also provides a good
description of the cluster profile.

A comparison of the cluster profiles formed before and
after the nucleation rate has become independent of time is
shown in Fig. 8. Although both profiles are consistent with
the form in Eq. �5�, the transient nucleating droplets are more
compact, in agreement with the predictions in Ref. �26�.

FIG. 6. �Color online� The fraction of copies for which the
largest cluster grows for a particular run for a 1D Ising model with
R=212, h=1.265, and L=218. The time for 50% growth is �37.4.
The largest cluster at this time corresponds to the nucleating droplet
and has �1080 spins. For this intervention 100 copies were consid-
ered; 20 copies were considered for all other runs.

FIG. 7. �Color online� Comparison of the mean cluster profile
�•� in the 1D Ising model after the nucleation rate has become
independent of time with �a� the form in Eq. �5� and �b� a Gaussian.
Note that Eq. �5� gives a better fit than the Gaussian, which under-
estimates the peak at x=0 and the wings. The x axis is measured in
units of R.
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We also directly coarse grained the spins at the time of
nucleation to obtain the density profile of the coarse-grained
magnetization 	m�x� �see Fig. 9�a��. The agreement between
the simulation and analytical results �29� are impressive, es-
pecially considering that the analytical form is valid only in
the limit R→�. The same qualitative differences between
the nucleating droplets that occur before and after the nucle-
ation rate has become independent of time is found �see
Fig. 9�b��, although the magnetization density profile is
much noisier than that based on the cluster analysis.

V. LANGEVIN SIMULATIONS

It is interesting to compare the results for the Ising model
and the Langevin dynamics of the �4 model. One advantage
of studying the Langevin dynamics of the �4 theory is that it
enables the efficient simulation of systems with a very large
interaction range R. If all lengths are scaled by a large value
of R, the effective magnitude of the noise decreases, making
faster simulations possible.

The coarse-grained Hamiltonian analogous to the 1D fer-
romagnetic Ising model with long-range interactions in an
external field h can be expressed as

H���x�� =� �−
1

2

R

d��x�
dx

�2

+ ��2�x�

+ u�4�x� − h��x��d��x� , �6�

where ��x� is the coarse-grained magnetization. A dynamics
consistent with this Hamiltonian is given by

��

�t
= − M

�H

��
+ � = − M�− R2�2�

�x2 + 2�� + 4u�3 − h� + � ,

�7�

where M is the mobility and ��x , t� represents zero-mean
Gaussian noise with ���x , t���x� , t���=2kTM��x−x����t− t��.

For nucleation near the spinodal the potential V=��2

+u�4−h� has a metastable well only for �
0. The magni-
tude of � and h at the spinodal are given by hs

=��8 ���3 /27u� and �s=���� � /6u�, and are found by setting

FIG. 10. �Color online� Log-linear plot of the distribution P�t�
of nucleation times for the one-dimensional Langevin equation with
R=2000 ��� and R=2500 ��� averaged over 50 000 runs. The
distribution is not exponential for early times, indicating that the
system is not in metastable equilibrium. Note that the nucleation
rate is a rapidly decreasing function of R.

FIG. 8. �Color online� The cluster profiles of the nucleating
droplets formed before �dashed line� and after �solid line� the nucle-
ation rate has become independent of time. Both profiles are con-
sistent with the form given in Eq. �5�, but the transient nucleating
droplets are slightly more compact. The fitting parameters are A
=0.38 and w=2.67 for the transient droplets and A=0.35 and w
=2.95 for the droplets formed after the nucleation rate has become
independent of time.

FIG. 9. �Color online� �a� The magnetization density profile of
the nucleating droplets formed after the nucleation rate has become
independent of time. The solid line is the analytical solution �29�,
which has the form in Eq. �5� with the calculated values A=0.085,
w=2.65, and 	0=−0.774. �b� Comparison of the density profile of
nucleating droplets formed before �dashed line� and after �solid
line� the nucleation rate has become independent of time by coarse
graining the magnetization. The same qualitative differences be-
tween the nucleating droplets that occur before and after the nucle-
ation rate has become independent of time are observed as in Fig. 8,
although the magnetization density profile is much noisier than the
cluster density profile.
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V�=V�=0. The distance from the spinodal is characterized
by the parameter �h= �hs−h�. For �h /hs�1, the bottom of
the metastable well �min is near �s, specifically �min=
−�s�1+�2�h /3hs�.

The stationary solutions of the dynamics are found by
setting �H /��=0. Besides the two uniform solutions corre-
sponding to the minima in V, there is a single nonuniform
solution, which approximates the nucleating droplet profile
when the nucleation barrier is large. When �h /hs�1, the
profile of the droplet is described by Eq. �5� with A
=�hs /6�h /�s, w= �8hs�h�s

2 /3�−1/4, and 	0=�min �12�.
The dynamics �7� is numerically integrated using the

scheme �30�

��t + �t� = ��t� − �tM�− R2�2�

�x2 + 2�� + 4u�3 − h�
+��t

�x
� , �8�

where d2� /dx2 is replaced by its central difference approxi-
mation. Numerical stability requires that �t
 ��x /R�2, but it
is often desirable to choose �t even smaller for accuracy.

As for the Ising simulations, we first prepare an equili-
brated system with � in the stable well corresponding to the
direction of the external field h. At t=0 the external field is
reversed so that the system is no longer in equilibrium. We
choose M =1, T=1, �=−1, u=1, and �h=0.005. The scaled
length of the system is chosen to be L /R=300. We choose R
to be large so that, on length scales of R, � fluctuates near its
equilibrium value �min�−0.44.

After nucleation occurs � will rapidly grow toward the
stable well. To determine the distribution of nucleation times,
we assume that when the value of the field � in any bin
reaches 0, nucleation has occurred. This relatively crude cri-
terion is sufficient for determining the distribution of nucle-
ation times if we assume that the time difference between the
nucleation event and its later detection takes a consistent
value between runs.

Figure 10 compares the distribution of 50 000 nucleation
times for systems with R=2000 and R=2500 with �x /R=1
and �t=0.1. The distribution shows the same qualitative be-
havior as found in the Metropolis simulations of the Ising
model �see Fig. 2�. For example, the distribution of nucle-
ation times is not exponential for early times after the
quench. As expected, the nucleation rate decreases as R in-
creases. Smaller values of �x and �t give similar results for
the distribution.

To find the droplet profiles, we need to identify the time
of nucleation more precisely. The intervention criterion,
which was applied in Sec. IV, is one possible method. In the
Langevin context we can employ a simpler criterion: nucle-
ation is considered to have occurred if � decays to the
saddle-point profile �given by Eq. �5� for �h /hs�1� when �
is evolved using noiseless dynamics �26,31�. For fixed �h
these two criteria agree in the R→� limit, but can give dif-
ferent results for finite R �32�.

In Fig. 11 we plot the average of 1000 density profiles of
the nucleating droplets formed after the nucleation rate has

become independent of time for R=2000 and R=4000. Note
that there are noticeable deviations of the averaged profiles
from the theoretical prediction in Eq. �5�, but the deviation is
less for R=4000. The deviation is due to the fact that the
bottom of the free energy well in the metastable state is
skewed; a similar deviation was also observed in the Ising
model. We also note that the individual nucleating droplets
look much different from their average. It is expected that as
R increases, the profiles of the individual nucleating droplets
will converge to the form given by Eq. �5�.

In Fig. 12 we compare the average of 1000 density pro-
files of nucleating droplets before and after the nucleation
rate has become independent of time. As for the Ising model,
there are subtle differences consistent with the predictions of
Ref. �26�. The transient droplets have slightly lower back-
ground magnetization and compensate by being denser and
more compact.

FIG. 11. �Color online� Comparison of the density profile ��x�
of the nucleating droplets found by numerically solving the Lange-
vin equation after the nucleation rate has become independent of
time for R=2000 �×� and R=4000 ��� to the theoretical prediction
�solid line� from Eq. �5� using the calculated values A=0.096, w
=3.58, and 	0=−0.44. The numerical solutions are averaged over
1000 profiles. The results suggest that as R increases, the observed
nucleation profiles approach the mean-field theory prediction.

FIG. 12. �Color online� The density profile of the nucleating
droplets found from numerical solutions of the Langevin equation
formed before �dotted line� and after �solid line� the nucleation rate
has become independent of time. Nucleation events occurring be-
fore t=15 are transient, and events occurring for t�30 can be
treated assuming that the system is in metastable equilibrium. Both
plots are the result of 1000 averaged profiles with an interaction
range R=2000.
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VI. SUMMARY

Although the time independence of the mean values of
macroscopic quantities such as the magnetization and the
energy is often used as an indicator of metastable equilib-
rium, we find that the observed relaxation time of the clusters
is much longer for sizes comparable to the size of the nucle-
ating droplet. This longer relaxation time is consistent with
the measured nonconstant nucleation rate even when global
quantities such as the magnetization and energy appear to be
stationary. By identifying the nucleating droplets, in the one-
dimensional long-range Ising model and the Langevin equa-
tion, we find structural differences between the nucleating
droplets, which occur before and after the nucleation rate has
become independent of time. Our results suggest that using
global quantities as indicators for metastable equilibrium
may not be appropriate in general, and distinguishing be-
tween equilibrium and transient nucleation is important in
studying the structure of nucleating droplets. Further studies
of transient nucleation in continuous models of more realistic
systems would be of interesting and practical importance.

Finally, we note a subtle implication of our results. For a
system to be truly in equilibrium would require that the mean
number of clusters of all sizes be independent of time. The
larger the cluster, the longer the time that would be required
for the mean number to become time independent. Hence,
the bigger the system, the longer the time that would be
required for the system to reach equilibrium. Given that the
system is never truly in metastable equilibrium so that the
ideas of Gibbs, Langer, and others are never exactly appli-
cable, when is the system close enough to metastable equi-
librium so that any possible simulation or experiment cannot
detect the difference? We have found that the magnetization
and energy are not sufficient indicators for nucleation and
that the answer depends on the process being studied. For
nucleation the equilibration of the number of clusters whose
size is comparable to the size of the nucleating droplet is the
relevant indicator.
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APPENDIX: RELAXATION OF CLUSTERS
AT THE CRITICAL TEMPERATURE

Accurate determinations of the dynamical critical expo-
nent z have been found from the relaxation of the magneti-
zation and energy at the critical temperature. In the following
we take a closer look at the relaxation of the Ising model by
studying the approach to equilibrium of the distribution of
clusters of various sizes.

We consider the R=1 Ising model on a square lattice with
L=5000. The system is initially equilibrated at either zero
temperature T0=0 �all spins up� or at T0=�, and then instan-
taneously quenched to the critical temperature Tc. The Me-
tropolis algorithm is used.

As a check on our results we first determine m�t� starting
from T0=0. Scaling arguments suggest that m�t� approaches
its equilibrium value as �33,34�

f�t� = Bt−�/�z + f�, �A1�

where the static critical exponents are �=1/8 and �=1. The
fit of our results in Fig. 13 to Eq. �A1� yields the estimate
z�2.19, which is consistent with previous results �35�. Note
that no time scale is associated with the evolution of m�t�.

We next determined ns�t�, the number of clusters of size s
at time t after the temperature quench. Because all the spins
are up at t=0, the number of �down� clusters of size s begins
at zero and increases to its �apparent� equilibrium value ns,�.
The value of the latter depends on the size of the system.

Figure 14 shows the evolution of clusters of size s=100
for one run. Because we know of no argument for the time
dependence of ns�t�−ns,� except in the mean-field limit �34�,
we have to rely on empirical fits. We find that the time de-

FIG. 13. �Color online� The relaxation of the magnetization m�t�
of the nearest-neighbor 2D Ising model at T=Tc starting from T0

=0; L=5000. The straight line is the fit to a power law with slope
�0.057.

FIG. 14. �Color online� The evolution of the number of clusters
of size s=100 at T=Tc starting from T0=0. The fit to Eq. �A2� gives
ns,�=51.3, C1=−42, C2=−15, �1=156, and �2=1070.
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pendence of ns�t� can be fitted to the sum of two exponen-
tials,

ns�t� − ns,� = C1e−t/�1 + C2e−t/�2, �A2�

where C1, C2, �1, and �2 are parameters to be fitted with �2
��1.

Figure 15�a� shows the relaxation time �2 as a function of
s for R=1 at T=Tc starting from T0=0. Note that the bigger
the cluster, the longer it takes to reach its equilibrium distri-
bution. That is, small clusters form first, and larger clusters
are formed by the merging of smaller ones. The s depen-
dence of �2 can be approximately fitted to a power law with
the exponent 0.4.

To prepare a configuration at T0=�, the system is ran-
domized with approximately half of the spins up and half of
the spins down. The temperature is instantaneously changed
to T=Tc. As before, we focus on the relaxation of down spin
clusters. In contrast to the T0=0 case, the evolution of the
clusters falls into three classes �see Fig. 16�. For small clus-

ters �1�s�40�, ns monotonically decreases to its equilib-
rium value. This behavior occurs because the initial random
configuration has an abundance of small clusters so that low-
ering the temperature causes the small clusters to merge to
form bigger ones. For intermediate size clusters �40
s

4000�, ns first increases and then decreases to its equilib-
rium value. The initial growth is due to the rapid coalescence
of smaller clusters to form intermediate ones. After there are
enough intermediate clusters, they slowly coalesce to form
bigger clusters. For clusters with s�4000, ns slowly in-
creases to its equilibrium value. The range of sizes for these
different classes of behavior depends on the system size.
In all three cases ns�t� can be fitted to the sum of two expo-
nentials. One of the two coefficients is negative for 40
s

4000 for which ns�t� overshoots its equilibrium value. The
relaxation time �2 is plotted in Fig. 15�b� as a function of s
and does not appear to be a simple function of s for the range
of values of s studied.
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